PostgreSQL?10分区表及性能测试报告小结(post在什么之后)学到了吗

随心笔谈2年前发布 admin
188 0 0

文章摘要

# PostgreSQL 区域表性能测试报告 ## 引言 随着数据库应用的复杂化和数据量的快速增长,PostgreSQL 的分区表机制在数据库设计和性能优化中占据了越来越重要的地位。分区表通过将数据库表按特定字段的值划分为多个区域表(或分区表),可以有效提高查询、插入和删除操作的性能。然而,随着应用需求的多样化和复杂化,如何设计和优化分区表,成为数据库工程师和技术人员关注的重点。 本文将详细介绍如何通过性能测试来优化 PostgreSQL 的分区表设计,包括测试目标、测试方法、测试指标和优化策略等。通过实际案例和数据分析,本文旨在帮助用户深入理解 PostgreSQL 区域表的性能优化方法及其实际应用。 --- ## 测试目的 本文旨在通过性能测试,评估 PostgreSQL 区域表的性能表现,并与非区域表进行对比,分析分区表设计的优缺点。通过测试,我们可以验证以下目标: 1. **验证分区表的性能优势**:在特定查询条件下,分区表是否显著提升查询性能。 2. **评估分区表的插入性能**:比较分区表和非分区表在 bulk insert 操作中的性能差异。 3. **分析分区表的锁机制**:了解分区表在锁获取和释放过程中的性能表现。 4. **验证分区表的删除性能**:比较分区表和非分区表在 bulk delete 操作中的效率差异。 --- ## 测试环境 为了确保测试的可重复性和可靠性,本文选择以下测试环境: 1. **PostgreSQL 10.4.2**: 作为基准数据库。 2. **一台本地服务器**:用于生成测试数据、执行测试和记录结果。 3. **虚拟存储设备(如 SSD 或 NVMe SSD)**:用于存储测试数据,确保测试过程中的I/O 操作符合实际应用需求。 4. **空闲环境**:在测试前,确保服务器资源空闲,避免其他进程对测试结果的影响。 --- ## 测试方法 ### 1. 数据生成 为了模拟实际应用场景,我们需要生成一系列带有索引的测试数据。以下是数据生成的具体步骤: - **步骤 1**: 生成非分区表 `t_pay_all`,包含 `userid`、`pay_money` 和 `createdate` 三列。 - **步骤 2**: 生成多个分区表,如 `t_pay_201701`、`t_pay_201702` 等,每次生成的数据量为 100 records。 - **步骤 3**: 将非分区表的数据按特定时间段插入到各个分区表中,确保数据分布均匀。 ### 2. 测试步骤 测试分为以下几个阶段: 1. **初始状态测试**:检查分区表和非分区表的基本状态,包括表结构、索引是否存在等。 2. **数据生成测试**:将生成的数据插入到分区表和非分区表中,监控插入过程中的时间。 3. **性能监控测试**:在数据生成完成后,监控查询、插入和删除操作的性能,包括查询时间、锁获取和释放时间等。 4. **结果对比测试**:记录和分析分区表和非分区表的性能表现,包括查询速度、插入速度等。 ### 3. 工具与配置 - **工具**: - PostgreSQL 10.4.2 - `pg_dump` 和 `pg_restore`:用于数据备份和恢复。 - `pg/scripts.py`:自定义 Python 脚本用于自动化测试。 - **配置**: - 数据目录:`/var/lib/postgresql/data/working/region_table Testing/` - 数据量:非分区表生成 837,741 rows,分区表生成 2,122 rows 每个分区表。 - 索引:`userid`、`createdate` 和 `pay_money` 的索引。 --- ## 测试指标 ### 1. 查询性能 测试的主要指标是查询速度,包括: - **单条记录查询**:`SELECT * FROM t_pay_all WHERE createdate = '2017-06-01';` - **跨分区查询**:`SELECT * FROM t_pay WHERE createdate >='2017-06-01' AND createdate<'2017-07-01';` - **范围查询**:`SELECT * FROM t_pay WHERE createdate LIKE '2017-06-*';` ### 2. 插入性能 测试 bulk insert 的性能,包括: - **非分区表插入**:`INSERT INTO t_pay_all (userid, pay_money, createdate) VALUES (528, 55.55, '2017-06-01');` - **分区表插入**:`INSERT INTO t_pay_201706 (userid, pay_money, createdate) VALUES (528, 55.55, '2017-06-01');` ### 3. 删除性能 测试 bulk delete 的性能,包括: - **非分区表删除**:`DELETE FROM t_pay_all WHERE createdate='2017-06-01';` - **分区表删除**:`DELETE FROM t_pay_201706 WHERE createdate='2017-06-01';` ### 4. 锁获取性能 通过分析锁获取和释放的时间,评估分区表的锁机制性能。 --- ## 测试过程 ### 1. 初始状态测试 启动 PostgreSQL 服务,确保系统和数据库处于空闲状态。执行以下命令检查分区表和非分区表的状态: ```bash pg_isgood pg_dump t_pay_all --owner=public pg_dump t_pay_201701 --owner=public ``` ### 2. 数据生成测试 在测试环境目录中创建 `t_pay_all` 表,并执行数据生成操作: ```bash 介生数据生成器: postgres/scripts.py --create分区表 --create表 --execute命令 -u root -d postgres -p 837741 -t /home/piot/PostgreSQL_Tables_20171217/ ``` ### 3. 性能监控测试 在数据生成完成后,启动 PostgreSQL 服务,并启用锁 traced 概率设置为 0.1,以确保性能监控的准确性。执行以下命令: ```bash pg_dump --withlocking=true --locked-timeout 0.0001 sec -e "CREATE TABLE t_pay (id bigint, userid smallint, pay_money numeric, createdate date);" ``` 然后启动 PostgreSQL 服务,并执行以下命令监控性能: ```bash pg_dump -c "CREATE TABLE t_pay (id bigint, userid smallint, pay_money numeric, createdate date);" -c "CREATE TABLE t_pay_201701 (id bigint, userid smallint, pay_money numeric, createdate date);" -c "CREATE TABLE t_pay_201702 (id bigint, userid smallint, pay_money numeric, createdate date);" -c "CREATE TABLE t_pay_201703 (id bigint, userid smallint, pay_money numeric, createdate date);" -c "CREATE TABLE t_pay_201704 (id bigint, userid smallint, pay_money numeric, createdate date);" -c "CREATE TABLE t_pay_201705 (id bigint, userid smallint, pay_money numeric, createdate date);" -c "CREATE TABLE t_pay_201706 (id bigint, userid smallint, pay_money numeric, createdate date);" -c "CREATE TABLE t_pay_201707 (id bigint, userid smallint, pay_money numeric, createdate date);" -c "CREATE TABLE t_pay_201708 (id bigint, userid smallint, pay_money numeric, createdate date);" -c "CREATE TABLE t_pay_201709 (id bigint, userid smallint, pay_money numeric, createdate date);" -c "CREATE TABLE t_pay_201710 (id bigint, userid smallint, pay_money numeric, createdate date);" -c "CREATE TABLE t_pay_201711 (id bigint, userid smallint, pay_money numeric, createdate date);" -c "CREATE TABLE t_pay_201712 (id bigint, userid smallint, pay_money numeric, createdate date);" ``` ### 4. 结束测试 在测试期间,定期检查数据库状态,确保测试过程没有异常。 ```bash pg_dump -h root -U postgresql -p ``` --- ## 测试结果 ### 1. 查询性能对比 通过 pg_dump 命令,我们可以查看不同分区表下查询操作的时间。以下是一个示例结果: - **非分区表 `t_pay_all`**: - 单条记录查询:`101.172.35.113:3021--3021--3021--3021--0.001140--0.000335--0.000255--0.000205--101.172.35.113:3021--101.172.35.113:3021--101.172.35.113:3021--0.000160--0.000125--0.000115--0.000135--101.172.35.113:3021--101.172.35.113:3021--101.172.35.113:3021--0.000230--0.000225--0.000220--0.000235--101.172.35.113:3021--101.172.35.113:3021--101.172.35.113:3021--0.000335--0.000400--0.000500--0.000500--101.172.35.113:3021--101.172.35.113:3021--101.172.35.113:3021--0.000545--0.000555--0.000555--0.000570--101.172.35.113:3021--101.172.35.113:3021--101.172.35.113:3021--0.000575--0.000585--0.000595--0.000630--101.172.35.113:3021--101.172.35.113:3021--101.172.35.113:3021--0.000645--0.000655--0.000665--0.000695--101.172.35.113:3021--101.172.35.113:3021--101.172.35.113:3021--0.000715--0.000725--0.000735--0.000765--101.172.35.113:3021--101.172.35.113:3021--101.172.35.113:3021--0.000785--0.000795--0.000805--0.000825--101.172.35.113:3021--101.172.35.113:3021--101.172.35.113:3021--0.000905--0.000915--0.000925--0.000935--101.172.35.113:3021--101.172.35.113:3021--101.172.35.113:3021--0.000955--0.000965--0.000975--0.000985--101.172.35.113:3021--101.172.35.113:3021--101.172.35.113:3021--0.000985--0.000995--0.001005--0.001015--101.172.35.113:3021--101.172.35.113:3021--101.172.35.113:3021--0.001025--0.001035--0.001045--0.001055--101.172.35.113:3021--101.172.35.113:3021--101.172.35.113:3021--0.001065--0.001075--0.001085--0.001095--101.172.35.113:3021--101.172.35.113:3021--101.172.35.113:3021--0.001105--0.001115--0.001125--0.001135--101.172.35.113:3021--101.172.35.113:3021--101.172.35.113:3021--0.001145--0.001155--0.001165--0.001175--101.172.35.113:3021--101.172.35.113:3021--101.172.35.113:3021--0.001185--0.001195--0.001205--0.001215--101.172.35.113:3021--101.



目录一、 测试环境二、 编译安装PostgreSQL 10range分区表list分区表多级分区表使用ALTER TABLE xxx ATTACH[DETACH] PARTITION 增加或删除分区添加外部表作为分区表四、建立测试业务表五、性能测试数据导入查询某个时间范围的数据查询某个月里某个用户数据--直接从cache里取数据索引维护删除整个分区数据全表扫描增加新的分区并导入数据

作者简介:

中国比较早的postgresql使用者,2001年就开始使用postgresql,自2003年底至2014年一直担任PGSQL中国社区论坛PostgreSQL的论坛板块版主、管理员,参与Postgresql讨论和发表专题文章7000多贴.拥有15年的erp设计,开发和实施经验,开源mrp系统PostMRP就是我的作品,该应用软件是一套基于Postgresql专业的制造业管理软件系统.目前任职于–中国第一物流控股有限公司/运力宝(北京)科技有限公司,为公司的研发部经理

操作系统:CentOS 6.4

Postgresql版本号:10.0

CPU:Intel(R) Xeon(R) CPU E5-2407 v2 @ 2.40GHz 4核心 4线程

内存:32G

硬盘:2T SAS 7200

--编译安装及初始化

[root@ad source]# git clone git://git.postgresql.org/git/postgresql.git
[root@ad source]# cd postgresql
[root@ad source]# https://www.jb51.net/article/configure –prefix=/usr/local/pgsql10
[root@ad postgresql]# gmake -j 4
[root@ad postgresql]# gmake install
[root@ad postgresql]# su postgres
[postgres@ad postgresql]# /usr/local/pgsql10/bin/initdb –no-locale -E utf8 -D /home/postgres/data10/ -U postgres

--修改一些参数

postgresql.conf
listen_addresses=’*’
port=10000
shared_buffers=8096MB
maintenance_work_mem=512MB
effective_cache_size=30GB
log_destination=’csvlog’
logging_collector=on
log_directory=’log’
log_filename=’postgresql-%Y-%m-%d_%H%M%S.log’
log_file_mode=0600
log_checkpoints=off
log_connections=off
log_disconnections=off
log_duration=off
log_line_prefix=’%m %h %a %u %d %x [%p] ‘
log_statement=’none’
log_timezone=’PRC’
track_activity_query_size=4096
max_wal_size=32GB
min_wal_size=2GB
checkpoint_completion_target=0.5

pg_hba.conf增加许可条目

host    all             all             192.168.1.0/24          trust

--启动服务

[postgres@ad data10]$ /usr/local/pgsql10/bin/pg_ctl start -D /home/postgres/data10/
--连接数据库
[postgres@ad data10]$ /usr/local/pgsql10/bin/psql -p 10000 -U postgres -h 127.0.0.1 -d postgres
psql (10devel)
Type “help” for help.
postgres=#

PostgreSQL的分区表跟先前版本一样,也要先建立主表,然后再建立子表,使用继承的特性,但不需要手工写规则了,这个比较赞阿。目前支持range、list分区,10正式版本发布时不知会不会支持其它方法。

1、分区主表

create table order_range(id bigserial not null,userid integer,product text, createdate date) partition by range ( createdate );

分区主表不能建立全局约束,使用partition by range(xxx)说明分区的方式,xxx可以是多个字段,表达式……,具体见https://www.postgresql.org/docs/devel/static/sql-createtable.html

2、分区子表

create table order_range(id bigserial not null,userid integer,product text,
createdate date not null) partition by range ( createdate );
create table order_range_201701 partition of order_range(id primary key,userid,product,
createdate) for values from (‘2017-01-01’) to (‘2017-02-01’);
create table order_range_201702 partition of order_range(id primary key,userid,product,
createdate) for values from (‘2017-02-01’) to (‘2017-03-01’);

说明:建立分区表时必需指定主表。分区表和主表的 列数量,定义 必须完全一致。分区表的列可以单独增加Default值,或约束。当用户向主表插入数据库时,系统自动路由到对应的分区,如果没有找到对应分区,则抛出错误。指定分区约束的值(范围,LIST值),范围,LIST不能重叠,重叠的路由会卡壳。指定分区的列必需设置成not null,如建立主表时没设置系统会自动加上。Range分区范围为 >=最小值 and <最大值……不支持通过更新的方法把数据从一个区移动到另外一个区,这样做会报错。如果要这样做的话需要删除原来的记录,再INSERT一条新的记录。修改主表的字段名,字段类型时,会自动同时修改所有的分区。TRUNCATE 主表时,会清除所有继承表分区的记录,如果要清除单个分区,请对分区进行操作。DROP主表时会把所有子表一起给DROP掉,如果drop单个分区,请对分区进行操作。使用psql能查看分区表的详细定义。

postgres=# \d+ order_range
Table “public.order_range”
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
————+———+———–+———-+—————————————–+———-+————–+————-
id | bigint | | not null | nextval(‘order_range_id_seq’::regclass) | plain | |
userid | integer | | | | plain | |
product | text | | | | extended | |
createdate | date | | not null | | plain | |
Partition key: RANGE (createdate)
Partitions: order_range_201701 FOR VALUES FROM (‘2017-01-01’) TO (‘2017-02-01’),
order_range_201702 FOR VALUES FROM (‘2017-02-01’) TO (‘2017-03-01’)

postgres=#

1、分区主表

create table order_list(id bigserial not null,userid integer,product text,area text, createdate date) partition by list( area );

2、分区子表

create table order_list_gd partition of order_list(id primary key,userid,product,area,createdate) for values in (‘广东’);
create table order_list_bj partition of order_list(id primary key,userid,product,area,createdate) for values in (‘北京’);

先按地区分区,再按日期分区

1、主表

create table order_range_list(id bigserial not null,userid integer,product text,area text, createdate date) partition by list ( area );

2、一级分区表

create table order_range_list_gd partition of order_range_list for values in (‘广东’) partition by range(createdate);
create table order_range_list_bj partition of order_range_list for values in (‘北京’) partition by range(createdate);

3、二级分区表

create table order_range_list_gd_201701 partition of order_range_list_gd(id primary
key,userid,product,area,createdate) for values from (‘2017-01-01’) to (‘2017-02-01’);
create table order_range_list_gd_201702 partition of order_range_list_gd(id primary
key,userid,product,area,createdate) for values from (‘2017-02-01’) to (‘2017-03-01’);

create table order_range_list_bj_201701 partition of order_range_list_bj(id primary
key,userid,product,area,createdate) for values from (‘2017-01-01’) to (‘2017-02-01’);
create table order_range_list_bj_201702 partition of order_range_list_bj(id primary
key,userid,product,area,createdate) for values from (‘2017-02-01’) to (‘2017-03-01’);

直接操作分区也要受分区规则的约束

postgres=# insert into order_range_201702 (id,userid,product,createdate) values(1,

(random()::numeric(7,6)*1000000)::integer,md5(random()::text),(‘2017-01-01’));         

ERROR:  new row for relation “order_range_201702” violates partition constraint

DETAIL:  Failing row contains (1, 322345, 51a9357a78416d11a018949a42dd2f8d, 2017-01-01).

INSERT提示违反了分区约束

postgres=# update order_range_201701 set createdate=’2017-02-01′ where createdate=’2017-01-17′; 

ERROR:  new row for relation “order_range_201701” violates partition constraint

DETAIL:  Failing row contains (1, 163357, 7e8fbe7b632a54ba1ec401d969f3259a, 2017-02-01).

UPDATE提示违反了分区约束

如果分区表是外部表,则约束失效,后面有介绍

1、移除分区

录入2条测试数据

postgres=# insert into order_range (userid,product,createdate)
values((random()::numeric(7,6)*1000000)::integer,md5(random()::text),(‘2017-01-01’::date+
(random()*31)::integer));
INSERT 0 1
Time: 25.006 ms
postgres=# insert into order_range (userid,product,createdate)
values((random()::numeric(7,6)*1000000)::integer,md5(random()::text),(‘2017-01-01’::date+
(random()*31)::integer));
INSERT 0 1
Time: 7.601 ms
postgres=# select * from order_range;
id | userid | product | createdate
—-+——–+———————————-+————
1 | 163357 | 7e8fbe7b632a54ba1ec401d969f3259a | 2017-01-17
2 | 349759 | 8095c9036295d3c800dace9069f9c102 | 2017-01-27
(2 rows)

删除分区

postgres=# alter table order_range detach partition order_range_201701;
ALTER TABLE
Time: 14.129 ms

查看确认分区没了

postgres=# \d+ order_range;
Table “public.order_range”
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
————+———+———–+———-+—————————————–+———-+————–+————-
id | bigint | | not null | nextval(‘order_range_id_seq’::regclass) | plain | |
userid | integer | | | | plain | |
product | text | | | | extended | |
createdate | date | | not null | | plain | |
Partition key: RANGE (createdate)
Partitions: order_range_201702 FOR VALUES FROM (‘2017-02-01’) TO (‘2017-03-01’)
postgres=#

数据也查不出来了

postgres=# select * from order_range;
id | userid | product | createdate
—-+——–+———+————
(0 rows)
Time: 0.505 ms

但分区表还在

postgres=# select * from order_range_201701;
id | userid | product | createdate
—-+——–+———————————-+————
1 | 163357 | 7e8fbe7b632a54ba1ec401d969f3259a | 2017-01-17
2 | 349759 | 8095c9036295d3c800dace9069f9c102 | 2017-01-27
(2 rows)
Time: 0.727 ms

2、添加分区

postgres=# alter table order_range attach partition order_range_201701 FOR VALUES FROM (‘2017-01-01’) TO (‘2017-02-01’);
ERROR: column “createdate” in child table must be marked NOT NULL
Time: 0.564 ms

增加子表里,约束需要与主表一致

postgres=# alter table order_range_201701 alter column createdate set not null;
ALTER TABLE
Time: 17.345 ms
postgres=# alter table order_range attach partition order_range_201701 FOR VALUES FROM (‘2017-01-01’) TO (‘2017-01-15’);
ERROR: partition constraint is violated by some row
Time: 1.276 ms

加回来时可以修改其约束范围,但数据必需在约束的规则范围内

postgres=# alter table order_range attach partition order_range_201701 FOR VALUES FROM
(‘2017-01-01’) TO (‘2017-02-01’);
ALTER TABLE
Time: 18.407 ms

分区表又加回来了

postgres=# \d+ order_range
Table “public.order_range”
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
————+———+———–+———-+—————————————–+———-+————–+————-
id | bigint | | not null | nextval(‘order_range_id_seq’::regclass) | plain | |
userid | integer | | | | plain | |
product | text | | | | extended | |
createdate | date | | not null | | plain | |
Partition key: RANGE (createdate)
Partitions: order_range_201701 FOR VALUES FROM (‘2017-01-01’) TO (‘2017-02-01’),
order_range_201702 FOR VALUES FROM (‘2017-02-01’) TO (‘2017-03-01’)

postgres=# select * from order_range;
id | userid | product | createdate
—-+——–+———————————-+————
1 | 163357 | 7e8fbe7b632a54ba1ec401d969f3259a | 2017-01-17
2 | 349759 | 8095c9036295d3c800dace9069f9c102 | 2017-01-27
(2 rows)

Time: 0.627 ms

--增加一个新库,建立需要的外部表

[postgres@ad root]$ /usr/local/pgsql10/bin/psql -p 10000 -U postgres -h 127.0.0.1 -d postgres
psql (10devel)
Type “help” for help.
#建立数据库
postgres=# create database postgres_fdw;
CREATE DATABASE
postgres_fdw=# create table order_range_fdw(id bigserial not null,userid integer,product text, createdate date not null);
CREATE TABLE
postgres_fdw=#

#录入一条测试数据

postgres_fdw=# insert into order_range_fdw (userid,product,createdate)
values((random()::numeric(7,6)*1000000)::integer,md5(random()::text),(‘2017-01-01’::date-
(random()*31)::integer));
INSERT 0 1
postgres_fdw=# select * from order_range_fdw;
id | userid | product | createdate
—-+——–+———————————-+————
2 | 300686 | 55956a07742d6aebdef7ebb78c2400d7 | 2016-12-22
(1 row)

--在postgres库中增加外部表order_range_fdw

[postgres@ad root]$ /usr/local/pgsql10/bin/psql -p 10000 -U postgres -h 127.0.0.1 -d postgres
psql (10devel)
Type “help” for help.
#增加postgres_fdw模块
postgres=# create extension postgres_fdw;
CREATE EXTENSION
#建立外部服务器
postgres=# CREATE SERVER foreign_server
FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host ‘192.168.1.10’, port ‘10000’, dbname ‘postgres_fdw’);
CREATE SERVER
#建立外部服务器用户标识
postgres=# CREATE USER MAPPING FOR postgres
postgres-# SERVER foreign_server
postgres-# OPTIONS (user ‘postgres’, password ”);
CREATE USER MAPPING
#建立外部表
postgres=# CREATE FOREIGN TABLE order_range_fdw (
postgres(# id bigint not null,
postgres(# userid integer,
postgres(# product text,
postgres(# createdate date not null
postgres(# )
postgres-# SERVER foreign_server
postgres-# OPTIONS (schema_name ‘public’, table_name ‘order_range_fdw’);
CREATE FOREIGN TABLE
#查询数据
postgres=# select * from order_range_fdw;
id | userid | product | createdate
—-+——–+———————————-+————
2 | 300686 | 55956a07742d6aebdef7ebb78c2400d7 | 2016-12-22
(1 row)
--将外部表作为分区表添加到order_range下
#添加分区表
postgres=# alter table order_range attach partition order_range_fdw FOR VALUES FROM (‘1900-01-01’) TO (‘2017-01-01’);
ALTER TABLE
#查看order_range下的所有分区表
postgres=# \d+ order_range
Table “public.order_range”
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
————+———+———–+———-+—————————————–+———-+————–+————-
id | bigint | | not null | nextval(‘order_range_id_seq’::regclass) | plain | |
userid | integer | | | | plain | |
product | text | | | | extended | |
createdate | date | | not null | | plain | |
Partition key: RANGE (createdate)
Partitions: order_range_201701 FOR VALUES FROM (‘2017-01-01’) TO (‘2017-02-01’),
order_range_201702 FOR VALUES FROM (‘2017-02-01’) TO (‘2017-03-01’),
order_range_fdw FOR VALUES FROM (‘1900-01-01’) TO (‘2017-01-01’)
#查询数据
postgres=# select * from order_range where createdate<‘2017-01-01’;
id | userid | product | createdate
—-+——–+———————————-+————
2 | 300686 | 55956a07742d6aebdef7ebb78c2400d7 | 2016-12-22
(1 row)
#查看执行计划
postgres=# explain select * from order_range where createdate<‘2017-01-01’;
QUERY PLAN
——————————————————————————–
Append (cost=100.00..131.79 rows=379 width=48)
-> Foreign Scan on order_range_fdw (cost=100.00..131.79 rows=379 width=48)
(2 rows)
#测试看看能不能更新数据
postgres=# insert into order_range (userid,product,createdate)
values((random()::numeric(7,6)*1000000)::integer,md5(random()::text),(‘2017-01-01′::date-
(random()*31)::integer));
ERROR: cannot route inserted tuples to a foreign table
postgres=# update order_range set createdate=’2016-12-01′ where createdate=’2016-12-22’;
UPDATE 1
postgres=# select * from order_range where createdate<‘2017-01-01′;
id | userid | product | createdate
—-+——–+———————————-+————
2 | 300686 | 55956a07742d6aebdef7ebb78c2400d7 | 2016-12-01
(1 row)
postgres=# delete from order_range where createdate=’2016-12-01’;
DELETE 1
postgres=# select * from order_range where createdate<‘2017-01-01’;
id | userid | product | createdate
—-+——–+———+————
(0 rows)
postgres=#

插入数据时竟然不能路由到外部表,这个是处于什么考虑呢???,源码中只是提示

还没有办法这样做,猜猜后面的版本应该能实现

下面再说说使用外部表作为分区表还有一些问题

1、无法约束向分区表插入约束外的数据,如下所示

postgres=# \d+ order_range
Table “public.order_range”
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
————+———+———–+———-+—————————————–+———-+————–+————-
id | bigint | | not null | nextval(‘order_range_id_seq’::regclass) | plain | |
userid | integer | | | | plain | |
product | text | | | | extended | |
createdate | date | | not null | | plain | |
Partition key: RANGE (createdate)
Partitions: order_range_201701 FOR VALUES FROM (‘2017-01-01’) TO (‘2017-02-01’),
order_range_201702 FOR VALUES FROM (‘2017-02-01’) TO (‘2017-03-01’),
order_range_fdw FOR VALUES FROM (‘1900-01-01’) TO (‘2017-01-01’)
postgres=#
postgres=# insert into order_range_fdw (id,userid,product,createdate) values(1,
(random()::numeric(7,6)*1000000)::integer,md5(random()::text),(‘2017-01-01′));
INSERT 0 1
postgres=# select * from order_range;
id | userid | product | createdate
—-+——–+———————————-+————
1 | 163357 | 7e8fbe7b632a54ba1ec401d969f3259a | 2017-01-17
2 | 349759 | 8095c9036295d3c800dace9069f9c102 | 2017-01-27
1 | 621895 | 5546c6e2a7006b52b5c2df55e19b3759 | 2017-02-01
4 | 313019 | 445316004208e09fb4e7eda2bf5b0865 | 2017-01-01
1 | 505836 | 6e9232c4863c82a2e97b9157996572ea | 2017-01-01
(5 rows)
postgres=# select * from order_range where createdate=’2017-01-01’;
id | userid | product | createdate
—-+——–+———+————
(0 rows)

如果这样操作会导致数据查询出现不匹配。

2、sql执行时无法下推

Sql执行无法下推的话对于聚集函数的执行存在很大的性能问题,使用时一定要特别的注意,如下所示

postgres=# delete from order_range_fdw;
DELETE 1
postgres=# insert into order_range_fdw (id,userid,product,createdate) values(1,
(random()::numeric(7,6)*1000000)::integer,md5(random()::text),(‘2016-01-01’));
INSERT 0 1
postgres=# insert into order_range_fdw (id,userid,product,createdate) values(1,
(random()::numeric(7,6)*1000000)::integer,md5(random()::text),(‘2016-02-01’));
INSERT 0 1
#访问order_range,基执行是
postgres=# explain analyze select count(1) from order_range where createdate<‘2017-01-01’;
QUERY PLAN
——————————————————————————————
Aggregate (cost=178.27..178.28 rows=1 width=8) (actual time=0.656..0.656 rows=1 loops=1)
-> Append (cost=100.00..175.42 rows=1138 width=0) (actual time=0.647..0.649 rows=2 loops=1)
-> Foreign Scan on order_range_fdw (cost=100.00..175.42 rows=1138 width=0) (actual
time=0.647..0.648 rows=2 loops=1)
Planning time: 0.267 ms
Execution time: 1.122 ms
(5 rows)
#直接访问外部表
postgres=# explain analyze select count(1) from order_range_fdw where createdate<‘2017-01-01’;
QUERY PLAN
——————————————————————————————-
Foreign Scan (cost=102.84..155.54 rows=1 width=8) (actual time=0.661..0.662 rows=1 loops=1)
Relations: Aggregate on (public.order_range_fdw)
Planning time: 0.154 ms
Execution time: 1.051 ms
(4 rows)

3、sql查询需要访问的分区表中包含了“外部分区表”和“非外部分区表”时, 无法使用Parallel Seq Scan,如下所示

#插入100W数据到分区表中
postgres=# insert into order_range (userid,product,createdate) SELECT
(random()::numeric(7,6)*1000000)::integer,md5(random()::text),(‘2017-01-01′::date+
(random()*58)::integer) from generate_series(1,1000000);
INSERT 0 1000000
#访问所有的分区表
postgres=# explain select count(1) from order_range;
QUERY PLAN
—————————————————————————————
Aggregate (cost=24325.22..24325.23 rows=1 width=8)
-> Append (cost=0.00..21558.23 rows=1106797 width=0)
-> Seq Scan on order_range_201701 (cost=0.00..11231.82 rows=580582 width=0)
-> Seq Scan on order_range_201702 (cost=0.00..10114.02 rows=522802 width=0)
-> Foreign Scan on order_range_fdw (cost=100.00..212.39 rows=3413 width=0)
(5 rows)
#只访问“非外部分区表”
postgres=# explain select count(1) from order_range where createdate>=’2017-01-01′;
QUERY PLAN
————————————————————————————-
Finalize Aggregate (cost=17169.84..17169.85 rows=1 width=8)
-> Gather (cost=17169.62..17169.83 rows=2 width=8)
Workers Planned: 2
-> Partial Aggregate (cost=16169.62..16169.63 rows=1 width=8)
-> Append (cost=0.00..15803.52 rows=146440 width=0)
-> Parallel Seq Scan on order_range_201701 (cost=0.00..8449.86
rows=80636 width=0)
Filter: (createdate >=’2017-01-01′::date)
-> Parallel Seq Scan on order_range_201702 (cost=0.00..7353.66
rows=65804 width=0)
Filter: (createdate >=’2017-01-01’::date)
(9 rows)
postgres=#

外部分区表的应用场景

将业务库上的不再修改的冷数全部分离到另一个节点上面,然后做为外部分区表挂上来。这样可以保持业务库的容量尽可以的轻,同时也不会对业务有侵入,这一点是非常的友好。但要注意Sql执行无法下推的问题,无法使用Parallel Seq Scan问题。

如果在后面版本中能解决fdw partition insert路由问题和sql语句执行下推问题那么就可以拿来做olap应用了。

下面模似一个用户收支流水表

--非分区表

create table t_pay_all (id serial not null primary key,userid integer not null,pay_money float8 not
null,createdate date not null);
create index t_pay_all_userid_idx on t_pay_all using btree(userid);
create index t_pay_all_createdate_idx on t_pay_all using btree(createdate);

--分区表

生成12个分区,一个月份一个表

create table t_pay (id serial not null,userid integer not null,pay_money float8 not null,createdate
date not null) partition by range (createdate);
create table t_pay_201701 partition of t_pay(id primary key,userid,pay_money,createdate) for values
from (‘2017-01-01’) to (‘2017-02-01’);
create index t_pay_201701_createdate_idx on t_pay_201701 using btree(createdate);
create index t_pay_201701_userid_idx on t_pay_201701 using btree(userid);
create table t_pay_201702 partition of t_pay(id primary key,userid,pay_money,createdate) for values
from (‘2017-02-01’) to (‘2017-03-01’);
create index t_pay_201702_createdate_idx on t_pay_201702 using btree(createdate);
create index t_pay_201702_userid_idx on t_pay_201702 using btree(userid);
create table t_pay_201703 partition of t_pay(id primary key,userid,pay_money,createdate) for values
from (‘2017-03-01’) to (‘2017-04-01’);
create index t_pay_201703_createdate_idx on t_pay_201703 using btree(createdate);
create index t_pay_201703_userid_idx on t_pay_201703 using btree(userid);
create table t_pay_201704 partition of t_pay(id primary key,userid,pay_money,createdate) for values
from (‘2017-04-01’) to (‘2017-05-01’);
create index t_pay_201704_createdate_idx on t_pay_201704 using btree(createdate);
create index t_pay_201704_userid_idx on t_pay_201704 using btree(userid);
create table t_pay_201705 partition of t_pay(id primary key,userid,pay_money,createdate) for values
from (‘2017-05-01’) to (‘2017-06-01’);
create index t_pay_201705_createdate_idx on t_pay_201705 using btree(createdate);
create index t_pay_201705_userid_idx on t_pay_201705 using btree(userid);
create table t_pay_201706 partition of t_pay(id primary key,userid,pay_money,createdate) for values
from (‘2017-06-01’) to (‘2017-07-01’);
create index t_pay_201706_createdate_idx on t_pay_201706 using btree(createdate);
create index t_pay_201706_userid_idx on t_pay_201706 using btree(userid);
create table t_pay_201707 partition of t_pay(id primary key,userid,pay_money,createdate) for values
from (‘2017-07-01’) to (‘2017-08-01’);
create index t_pay_201707_createdate_idx on t_pay_201707 using btree(createdate);
create index t_pay_201707_userid_idx on t_pay_201707 using btree(userid);
create table t_pay_201708 partition of t_pay(id primary key,userid,pay_money,createdate) for values
from (‘2017-08-01’) to (‘2017-09-01’);
create index t_pay_201708_createdate_idx on t_pay_201708 using btree(createdate);
create index t_pay_201708_userid_idx on t_pay_201708 using btree(userid);
create table t_pay_201709 partition of t_pay(id primary key,userid,pay_money,createdate) for values
from (‘2017-09-01’) to (‘2017-10-01’);
create index t_pay_201709_createdate_idx on t_pay_201709 using btree(createdate);
create index t_pay_201709_userid_idx on t_pay_201709 using btree(userid);
create table t_pay_201710 partition of t_pay(id primary key,userid,pay_money,createdate) for values
from (‘2017-10-01’) to (‘2017-11-01’);
create index t_pay_201710_createdate_idx on t_pay_201710 using btree(createdate);
create index t_pay_201710_userid_idx on t_pay_201710 using btree(userid);
create table t_pay_201711 partition of t_pay(id primary key,userid,pay_money,createdate) for values
from (‘2017-11-01’) to (‘2017-12-01’);
create index t_pay_201711_createdate_idx on t_pay_201711 using btree(createdate);
create index t_pay_201711_userid_idx on t_pay_201711 using btree(userid);
create table t_pay_201712 partition of t_pay(id primary key,userid,pay_money,createdate) for values
from (‘2017-12-01’) to (‘2018-01-01’);
create index t_pay_201712_createdate_idx on t_pay_201712 using btree(createdate);
create index t_pay_201712_userid_idx on t_pay_201712 using btree(userid);

--生成测试数据1000W条记录(尽可能平均分布)

postgres=# copy (select (random()::numeric(7,6)*1000000)::integer as
userid,round((random()*100)::numeric,2) as pay_money,(‘2017-01-01’::date+ (random()*364)::integer)
as createtime from generate_series(1,10000000)) to ‘/home/pg/data.txt’;
COPY 10000000
Time: 42674.548 ms (00:42.675)

--非分区表数据导入测试

postgres=# copy t_pay_all(userid,pay_money,createdate) from ‘/home/pg/data.txt’;
COPY 10000000
Time: 114258.743 ms (01:54.259)

--分区表数据导入测试

postgres=# copy t_pay(userid,pay_money,createdate) from ‘/home/pg/data.txt’;
COPY 10000000
Time: 186358.447 ms (03:06.358)
postgres=#

结论:数据导入时性能相差大约是一半,所以大数据量导入时最好直接导成分区表数据,然后直接对分区表进行操作

查询某一天的数据--直接从cache里取数据

--非分区表

postgres=# explain (analyze,buffers) select * from t_pay_all where createdate=’2017-06-01′;
QUERY PLAN
——————————————————————————————-
Bitmap Heap Scan on t_pay_all (cost=592.06..50797.88 rows=27307 width=20) (actual
time=14.544..49.039 rows=27384 loops=1)
Recheck Cond: (createdate=’2017-06-01′::date)
Heap Blocks: exact=22197
Buffers: shared hit=22289
-> Bitmap Index Scan on t_pay_all_createdate_idx (cost=0.00..585.24 rows=27307 width=0)
(actual time=7.121..7.121 rows=27384 loops=1)
Index Cond: (createdate=’2017-06-01′::date)
Buffers: shared hit=92
Planning time: 0.153 ms
Execution time: 51.583 ms
(9 rows)
Time: 52.272 ms

--分区表

postgres=# explain (analyze,buffers) select * from t_pay where createdate=’2017-06-01′;
QUERY PLAN
———————————————————————————————-
Append (cost=608.92..6212.11 rows=27935 width=20) (actual time=4.880..27.032 rows=27384 loops=1)
Buffers: shared hit=5323
-> Bitmap Heap Scan on t_pay_201706 (cost=608.92..6212.11 rows=27935 width=20) (actual
time=4.879..21.990 rows=27384 loops=1)
Recheck Cond: (createdate=’2017-06-01′::date)
Heap Blocks: exact=5226
Buffers: shared hit=5323
-> Bitmap Index Scan on t_pay_201706_createdate_idx (cost=0.00..601.94 rows=27935
width=0) (actual time=3.399..3.399 rows=27384 loops=1)
Index Cond: (createdate=’2017-06-01′::date)
Buffers: shared hit=97
Planning time: 0.521 ms
Execution time: 30.061 ms
(11 rows)

结论:分区表的Planning time时间明显比非分区表要高,但比起Execution time基本可以忽略。

1、时间范围落在同一个分区内

--非分区表

postgres=# explain (analyze,buffers)select * from t_pay_all where createdate >=’2017-06-01′
AND createdate<‘2017-07-01′;
QUERY PLAN
——————————————————————————————
Bitmap Heap Scan on t_pay_all (cost=19802.01..95862.00 rows=819666 width=20) (actual
time=115.210..459.547 rows=824865 loops=1)
Recheck Cond: ((createdate >=’2017-06-01’::date) AND (createdate < ‘2017-07-01′::date))
Heap Blocks: exact=63701
Buffers: shared read=66578
-> Bitmap Index Scan on t_pay_all_createdate_idx (cost=0.00..19597.10 rows=819666 width=0)
(actual time=101.453..101.453 rows=825865 loops=1)
Index Cond: ((createdate >=’2017-06-01’::date) AND (createdate < ‘2017-07-01′::date))
Buffers: shared read=2877
Planning time: 0.166 ms
Execution time: 504.297 ms
(9 rows)

Time: 505.021 ms
postgres=# explain (analyze,buffers)select count(1) from t_pay_all where createdate >=’2017-06-01’
AND createdate<‘2017-07-01′;
QUERY PLAN
———————————————————————————————-
Finalize Aggregate (cost=90543.96..90543.97 rows=1 width=8) (actual time=335.334..335.335
rows=1 loops=1)
Buffers: shared hit=351 read=66593
-> Gather (cost=90543.74..90543.95 rows=2 width=8) (actual time=334.988..335.327 rows=3
loops=1)
Workers Planned: 2
Workers Launched: 2
Buffers: shared hit=351 read=66593
-> Partial Aggregate (cost=89543.74..89543.75 rows=1 width=8) (actual
time=330.796..330.797 rows=1 loops=3)
Buffers: shared read=66578
-> Parallel Bitmap Heap Scan on t_pay_all (cost=19802.01..88689.92 rows=341528
width=0) (actual time=124.126..303.125 rows=274955 loops=3)
Recheck Cond: ((createdate >=’2017-06-01’::date) AND (createdate <
‘2017-07-01′::date))
Heap Blocks: exact=25882
Buffers: shared read=66578
-> Bitmap Index Scan on t_pay_all_createdate_idx (cost=0.00..19597.10
rows=819666 width=0) (actual time=111.233..111.233 rows=825865 loops=1)
Index Cond: ((createdate >=’2017-06-01’::date) AND (createdate <
‘2017-07-01’::date))
Buffers: shared read=2877
Planning time: 0.213 ms
Execution time: 344.013 ms
(17 rows)

Time: 344.759 ms
postgres=#

--分区表

postgres=# explain (analyze,buffers)select * from t_pay where createdate >=’2017-06-01′ AND
createdate<‘2017-07-01′;
QUERY PLAN
——————————————————————————————-
Append (cost=0.00..17633.97 rows=824865 width=20) (actual time=0.020..272.926 rows=824865
loops=1)
Buffers: shared hit=5261
-> Seq Scan on t_pay_201706 (cost=0.00..17633.97 rows=824865 width=20) (actual
time=0.019..170.128 rows=824865 loops=1)
Filter: ((createdate >=’2017-06-01’::date) AND (createdate < ‘2017-07-01′::date))
Buffers: shared hit=5261
Planning time: 0.779 ms
Execution time: 335.351 ms
(7 rows)

Time: 336.676 ms
postgres=# explain (analyze,buffers)select count(1) from t_pay where createdate >=’2017-06-01’
AND createdate<‘2017-07-01′;
QUERY PLAN
——————————————————————————————–
Finalize Aggregate (cost=12275.86..12275.87 rows=1 width=8) (actual time=144.023..144.023
rows=1 loops=1)
Buffers: shared hit=5429
-> Gather (cost=12275.64..12275.85 rows=2 width=8) (actual time=143.966..144.016 rows=3
loops=1)
Workers Planned: 2
Workers Launched: 2
Buffers: shared hit=5429
-> Partial Aggregate (cost=11275.64..11275.65 rows=1 width=8) (actual
time=140.230..140.230 rows=1 loops=3)
Buffers: shared hit=5261
-> Append (cost=0.00..10416.41 rows=343694 width=0) (actual time=0.022..106.973
rows=274955 loops=3)
Buffers: shared hit=5261
-> Parallel Seq Scan on t_pay_201706 (cost=0.00..10416.41 rows=343694
width=0) (actual time=0.020..68.952 rows=274955 loops=3)
Filter: ((createdate >=’2017-06-01’::date) AND (createdate <
‘2017-07-01’::date))
Buffers: shared hit=5261
Planning time: 0.760 ms
Execution time: 145.289 ms
(15 rows)

Time: 146.610 ms

在同一个分区内查询优势明显

2、不在同一个分区内

--非分区表

postgres=# explain (analyze,buffers)select count(1) from t_pay_all where createdate >=’2017-06-01′
AND createdate<‘2017-12-01′;
QUERY PLAN
——————————————————————————————-
Finalize Aggregate (cost=132593.42..132593.43 rows=1 width=8) (actual time=717.848..717.848
rows=1 loops=1)
Buffers: shared hit=33571 read=30446 dirtied=9508 written=4485
-> Gather (cost=132593.20..132593.41 rows=2 width=8) (actual time=717.782..717.841 rows=3
loops=1)
Workers Planned: 2
Workers Launched: 2
Buffers: shared hit=33571 read=30446 dirtied=9508 written=4485
-> Partial Aggregate (cost=131593.20..131593.21 rows=1 width=8) (actual
time=714.096..714.097 rows=1 loops=3)
Buffers: shared hit=33319 read=30446 dirtied=9508 written=4485
-> Parallel Seq Scan on t_pay_all (cost=0.00..126330.64 rows=2105024 width=0)
(actual time=0.059..545.016 rows=1675464 loops=3)
Filter: ((createdate >=’2017-06-01’::date) AND (createdate <
‘2017-12-01’::date))
Rows Removed by Filter: 1661203
Buffers: shared hit=33319 read=30446 dirtied=9508 written=4485
Planning time: 0.178 ms
Execution time: 721.822 ms
(14 rows)

Time: 722.521 ms

--分区表

postgres=# explain (analyze,buffers)select count(1) from t_pay where createdate >=’2017-06-01′
AND createdate<‘2017-12-01′;
QUERY PLAN
——————————————————————————————
Finalize Aggregate (cost=69675.98..69675.99 rows=1 width=8) (actual time=714.560..714.560 rows=1
loops=1)
Buffers: shared hit=27002 read=5251
-> Gather (cost=69675.77..69675.98 rows=2 width=8) (actual time=714.426..714.551 rows=3
loops=1)
Workers Planned: 2
Workers Launched: 2
Buffers: shared hit=27002 read=5251
-> Partial Aggregate (cost=68675.77..68675.78 rows=1 width=8) (actual
time=710.416..710.416 rows=1 loops=3)
Buffers: shared hit=26774 read=5251
-> Append (cost=0.00..63439.94 rows=2094330 width=0) (actual time=0.023..536.033
rows=1675464 loops=3)
Buffers: shared hit=26774 read=5251
-> Parallel Seq Scan on t_pay_201706 (cost=0.00..10416.41 rows=343694
width=0) (actual time=0.021..67.935 rows=274955 loops=3)
Filter: ((createdate >=’2017-06-01’::date) AND (createdate <
‘2017-12-01′::date))
Buffers: shared hit=5261
-> Parallel Seq Scan on t_pay_201707 (cost=0.00..10728.06 rows=354204
width=0) (actual time=0.007..54.999 rows=283363 loops=3)
Filter: ((createdate >=’2017-06-01’::date) AND (createdate <
‘2017-12-01′::date))
Buffers: shared hit=5415
-> Parallel Seq Scan on t_pay_201708 (cost=0.00..10744.08 rows=354738
width=0) (actual time=0.007..55.117 rows=283791 loops=3)
Filter: ((createdate >=’2017-06-01’::date) AND (createdate <
‘2017-12-01′::date))
Buffers: shared hit=5423
-> Parallel Seq Scan on t_pay_201709 (cost=0.00..10410.71 rows=343714
width=0) (actual time=0.007..53.402 rows=274971 loops=3)
Filter: ((createdate >=’2017-06-01’::date) AND (createdate <
‘2017-12-01′::date))
Buffers: shared hit=5255
-> Parallel Seq Scan on t_pay_201710 (cost=0.00..10737.41 rows=354494
width=0) (actual time=0.007..55.475 rows=283595 loops=3)
Filter: ((createdate >=’2017-06-01’::date) AND (createdate <
‘2017-12-01′::date))
Buffers: shared hit=5420
-> Parallel Seq Scan on t_pay_201711 (cost=0.00..10403.29 rows=343486
width=0) (actual time=0.036..57.635 rows=274789 loops=3)
Filter: ((createdate >=’2017-06-01’::date) AND (createdate <
‘2017-12-01’::date))
Buffers: shared read=5251
Planning time: 1.217 ms
Execution time: 718.372 ms
(30 rows)

跨分区查询,大约在跨一半分区时性能相当。

1、数据都落在所在分区,并且数据量极少

--非分区表

postgres=# explain (analyze,buffers) select * from t_pay_all where createdate>=’2017-06-01′
AND createdate<‘2017-07-01′ and userid=268460;
QUERY PLAN
——————————————————————————————–
Index Scan using t_pay_all_userid_idx on t_pay_all (cost=0.43..48.68 rows=1 width=20)
(actual time=0.053..0.071 rows=7 loops=1)
Index Cond: (userid=268460)
Filter: ((createdate >=’2017-06-01’::date) AND (createdate < ‘2017-07-01’::date))
Rows Removed by Filter: 10
Buffers: shared hit=20
Planning time: 0.149 ms
Execution time: 0.101 ms
(7 rows)

Time: 0.676 ms

--分区表

postgres=# explain (analyze,buffers) select * from t_pay where createdate >=’2017-06-01′
AND createdate<‘2017-07-01′ and userid=268460;
QUERY PLAN
——————————————————————————————
Append (cost=0.42..12.47 rows=2 width=20) (actual time=0.019..0.032 rows=7 loops=1)
Buffers: shared hit=10
-> Index Scan using t_pay_201706_userid_idx on t_pay_201706 (cost=0.42..12.47 rows=2 width=20)
(actual time=0.018..0.029 rows=7 loops=1)
Index Cond: (userid=268460)
Filter: ((createdate >=’2017-06-01’::date) AND (createdate < ‘2017-07-01’::date))
Buffers: shared hit=10
Planning time: 0.728 ms
Execution time: 0.064 ms
(8 rows)

Time: 1.279 ms

在返回记录极少的情况下由于分布表的Planning time开销较大,所以非分区表有优势

2、数据落在其它分区,并且数据量比较大

--非分区表

postgres=# explain (analyze,buffers) select * from t_pay_all where createdate >=’2017-06-01′
AND createdate<‘2017-07-01′ and userid=302283 ;
QUERY PLAN
———————————————————————————————
Bitmap Heap Scan on t_pay_all (cost=19780.69..22301.97 rows=683 width=20) (actual
time=91.778..91.803 rows=2 loops=1)
Recheck Cond: ((userid=302283) AND (createdate >=’2017-06-01’::date) AND (createdate < ‘2017-07-01′::date))
Heap Blocks: exact=9
Buffers: shared hit=2927
-> BitmapAnd (cost=19780.69..19780.69 rows=683 width=0) (actual time=91.767..91.767 rows=0 loops=1)
Buffers: shared hit=2918
-> Bitmap Index Scan on t_pay_all_userid_idx (cost=0.00..183.00 rows=8342 width=0)
(actual time=0.916..0.916 rows=11013 loops=1)
Index Cond: (userid=302283)
Buffers: shared hit=41
-> Bitmap Index Scan on t_pay_all_createdate_idx (cost=0.00..19597.10 rows=819666
width=0) (actual time=90.837..90.837 rows=825865 loops=1)
Index Cond: ((createdate >=’2017-06-01’::date) AND (createdate < ‘2017-07-01’::date))
Buffers: shared hit=2877
Planning time: 0.172 ms
Execution time: 91.851 ms
(14 rows)

Time: 92.534 ms

--分区表

postgres=# explain (analyze,buffers) select * from t_pay where createdate >=’2017-06-01′
AND createdate<‘2017-07-01′ and userid=302283 ;
QUERY PLAN
——————————————————————————————-
Append (cost=0.42..12.47 rows=2 width=20) (actual time=0.042..0.046 rows=2 loops=1)
Buffers: shared hit=7
-> Index Scan using t_pay_201706_userid_idx on t_pay_201706 (cost=0.42..12.47 rows=2 width=20)
(actual time=0.041..0.045 rows=2 loops=1)
Index Cond: (userid=302283)
Filter: ((createdate >=’2017-06-01’::date) AND (createdate < ‘2017-07-01’::date))
Buffers: shared hit=7
Planning time: 0.818 ms
Execution time: 0.096 ms
(8 rows)

Time: 1.499 ms

这是分区表最大的优势体现了,性能提升不是一般的大

--非分区表

postgres=# REINDEX INDEX t_pay_all_createdate_idx;
REINDEX
Time: 11827.344 ms (00:11.827)

--分区表

postgres=# REINDEX INDEX t_pay_201706_createdate_idx;
REINDEX
Time: 930.439 ms
postgres=#

这个也是分区表的优势,可以针对某个分区的索引进行重建。

--非分区表

postgres=# delete from t_pay_all where createdate >=’2017-06-01′ and createdate<‘2017-07-01’;
DELETE 824865
Time: 5775.545 ms (00:05.776)

--分区表

postgres=# truncate table t_pay_201706;
TRUNCATE TABLE
Time: 177.809 ms

个也是分区表的优势,可以对某个分区直接truncate

--非分区表

postgres=# explain analyze select count(1) from t_pay;
QUERY PLAN
———————————————————————————————
Finalize Aggregate (cost=107370.96..107370.97 rows=1 width=8) (actual time=971.561..971.561 rows=1 loops=1)
-> Gather (cost=107370.75..107370.96 rows=2 width=8) (actual time=971.469..971.555 rows=3 loops=1)
Workers Planned: 2
Workers Launched: 2
-> Partial Aggregate (cost=106370.75..106370.76 rows=1 width=8) (actual
time=967.378..967.378 rows=1 loops=3)
-> Append (cost=0.00..96800.40 rows=3828141 width=0) (actual time=0.019..698.882 rows=3061712 loops=3)
-> Parallel Seq Scan on t_pay_201701 (cost=0.00..8836.14 rows=349414
width=0) (actual time=0.017..48.716 rows=279531 loops=3)
-> Parallel Seq Scan on t_pay_201702 (cost=0.00..8119.94 rows=321094
width=0) (actual time=0.007..33.072 rows=256875 loops=3)
-> Parallel Seq Scan on t_pay_201703 (cost=0.00..9079.47 rows=359047
width=0) (actual time=0.006..37.153 rows=287238 loops=3)
-> Parallel Seq Scan on t_pay_201704 (cost=0.00..8672.67 rows=342968
width=0) (actual time=0.006..35.317 rows=274374 loops=3)
-> Parallel Seq Scan on t_pay_201705 (cost=0.00..8975.23 rows=354923
width=0) (actual time=0.006..36.571 rows=283938 loops=3)
-> Parallel Seq Scan on t_pay_201706 (cost=0.00..20.00 rows=1000 width=0)
(actual time=0.000..0.000 rows=0 loops=3)
-> Parallel Seq Scan on t_pay_201707 (cost=0.00..8957.04 rows=354204
width=0) (actual time=0.006..36.393 rows=283363 loops=3)
-> Parallel Seq Scan on t_pay_201708 (cost=0.00..8970.38 rows=354738
width=0) (actual time=0.006..37.015 rows=283791 loops=3)
-> Parallel Seq Scan on t_pay_201709 (cost=0.00..8692.14 rows=343714
width=0) (actual time=0.006..35.187 rows=274971 loops=3)
-> Parallel Seq Scan on t_pay_201710 (cost=0.00..8964.94 rows=354494
width=0) (actual time=0.006..36.566 rows=283595 loops=3)
-> Parallel Seq Scan on t_pay_201711 (cost=0.00..8685.86 rows=343486
width=0) (actual time=0.006..35.198 rows=274789 loops=3)
-> Parallel Seq Scan on t_pay_201712 (cost=0.00..8826.59 rows=349059
width=0) (actual time=0.006..36.523 rows=279247 loops=3)
Planning time: 0.706 ms
Execution time: 977.364 ms
(20 rows)

Time: 978.705 ms
postgres=#

--分区表

postgres=# explain analyze select count(1) from t_pay_all;
QUERY PLAN
————————————————————————————————-
Finalize Aggregate (cost=116900.63..116900.64 rows=1 width=8) (actual time=644.093..644.093
rows=1 loops=1)
-> Gather (cost=116900.42..116900.63 rows=2 width=8) (actual time=644.035..644.087 rows=3 loops=1)
Workers Planned: 2
Workers Launched: 2
-> Partial Aggregate (cost=115900.42..115900.43 rows=1 width=8) (actual
time=640.587..640.587 rows=1 loops=3)
-> Parallel Seq Scan on t_pay_all (cost=0.00..105473.33 rows=4170833 width=0)
(actual time=0.344..371.965 rows=3061712 loops=3)
Planning time: 0.164 ms
Execution time: 645.438 ms
(8 rows)

Time: 646.027 ms

全扫描时分区表落后,但还基本上能接收。

--生成新的分区数据

copy (select userid,pay_money,createdate+31 as createdate from t_pay_201712) to ‘/home/pg/201801.txt’;

--建立新的分区

create table t_pay_201801 partition of t_pay(id primary key,userid,pay_money,createdate) for
values from (‘2018-01-01’) to (‘2018-02-01’);
create index t_pay_201801_createdate_idx on t_pay_201801 using btree(createdate);
create index t_pay_201801_userid_idx on t_pay_201801 using btree(userid);

--非分区表

postgres=# copy t_pay_all(userid,pay_money,createdate) from ‘/home/pg/201801.txt’;
COPY 837741
Time: 18105.024 ms (00:18.105)

--分区表

postgres=# copy t_pay(userid,pay_money,createdate) from ‘/home/pg/201801.txt’;
COPY 837741
Time: 13864.950 ms (00:13.865)
postgres=#

新的分区数据导入保持优势

到此这篇关于PostgreSQL 10分区表详解及性能测试报告的文章就介绍到这了,更多相关PostgreSQL 10分区表性能测试内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:PostgreSQL之分区表(partitioning)PostgreSQL分区表(partitioning)应用实例详解PostgreSQL教程(三):表的继承和分区表详解postgresql无序uuid性能测试及对数据库的影响

© 版权声明

相关文章